
Hungarian Reference Sheet

This is a summary of some common Hungarian usage. It is intended to be a supplement to documents
describing Hungarian in more detail. It leaves out some useful features in the interest of simplicity.

Identifiers and Defined Constants
Scope + Prefix + Base Type + Qualifier (not all may appear; Base Type should always be used)
Prefix and Base Type in lower case, Qualifier capitalized; e.g. c + ch + LastName = cchLastName

Scope
m_ member of a class
g_ global
s_ static

Prefixes
p pointer
a array
i index into an array
c count
d difference
h handle

Base Types
f flag (Boolean)
ch character
sz zero-terminated (C-style) string
st Pascal-type string

New Base Types
2-4 letters, somewhat mnemonic,
 acronyms common
structs/classes are typically new Base Types

Qualifiers
Used to distinguish multiple instances of a type and convey purpose.
No qualifier is used if the purpose is unambiguous; typically no qualifier on the primary one.
First letter capitalized, rest are lowercase.
Occasionally, more than one qualifier used, e.g. pchMinSav .

Min the first element in the set
Max the upper limit of elements in a set (one past the last valid element)
Mic the current first element in a set (rarely used)
Most the current last element in a set
Mac the current upper limit of elements in a set (one past the last current element)
First the first element to be dealt with
Last the last element to be dealt with
Lim the upper limit of elements to be dealt with (one past the last element to be dealt with)

 For dealing with members of a set (array):
 Min <= Mic <= First <= Last <= Most < Lim <= Mac <= Max
 Lim, Mac, and Max refer to invalid elements (one past the last valid element)

Sav temporary saved value
Nil special illegal value
T temporary value (use sparingly; if multiple in the same context, be more descriptive)
Cur the current item
Src source
Dst destination
Next the next item
Prev the previous item

Functions
Begin with the value returned (if any).
Follow return type with statement of what function does (verb + object), e.g. FInitAch.
Capitalize the first letter of each word.

Examples

When working with screen coordinates, it’s common to use x and y. The distance between coordinates is
expressed using the “d” prefix.

dxScreen = xMax - xMin; yTop += dy;

When you define a struct or class, its name should be all uppercase, and any variables of that type should
use the same letters all lowercase. For example, if you create a struct to hold game state, you might use GS
(an acronym for Game State).

struct GS {...}; GS gs;

Suppose you want to use an array to store people’s heights, and decide to use integers to express height in
inches. Even though you are using a built-in type (int), you are essentially creating a new Base Type for
height since that’s what you’re manipulating. You could choose to call it something like “ht” or “hgt”.

int aht[ihtMax]; for (iht=0; iht<ihtMax; ++iht) ht=aht[iht];

(Note that “ht” doesn’t become plural when you make an array -- it’s not ahts.)

Consider an array that can hold 20 characters, and currently contains “The quick fox”
Suppose that we want to capitalize all letters in the word “quick”

#define ichMax 20 // or const int ichMax = 20;
char ach[ichMax];

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
T h e q u i c k f o x

ichMin 0 index of first possible char in ach
ichMax 20 index just after last possible char in ach
ichMic 0 index of lowest valid char in ach
ichMost 12 index of last valid char in ach
ichMac 13 index just after last valid char in ach
ichFirst 4 index of first char to modify
ichLast 8 index of last char to modify
ichLim 9 index of char just after last char to modify

To capitalize letters, we could call a function ChUpper (which returns a ch that is uppercase) as
follows:

for (ich=ichFirst; ich<ichLim; ++ich)
 ach[ich]=ChUpper(ach[ich]);

(or) for (ich=ichFirst; ich<=ichLast; ++ich)
 ach[ich]=ChUpper(ach[ich]);

Consider a struct FOO that is a node for a linked list and contains a pointer to the next node, “pfooNext”.

void OutputFooList(FOO *pfooHead)
{
 FOO *pfoo;
 for (pfoo = pfooHead; pfoo != NULL; pfoo = pfoo->pfooNext)
 // output contents of pfoo...
}

